ASSESSMENT OF MICROPLASTIC CONCENTRATIONS IN HUMAN STOOL
FINAL RESULTS OF A PROSPECTIVE STUDY

Bettina Liebmann1, Sebastian Köppel1, Philipp Königshofer2, Theresa Bucsics2, Thomas Reiberger2 and Philipp Schwabl2

1 Environment Agency Austria (Umweltbundesamt GmbH), Spittelauer Lände 5, 1090 Vienna, Austria. bettina.liebmann@umweltbundesamt.at
2 Div. of Gastroenterology & Hepatolology, Dept. of Internal Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria

Do microplastics reach the human gut?

The microplastics literature provides evidence that tiny plastic particles are accumulating in the marine food chain. Scientists have also detected microplastics in food intended for human consumption such as salt or bottled drinks. It has been long suspected that humans are orally exposed to microplastics via their diet. This pilot study was conducted with eight participants from across the globe. Each person kept a food diary in the week leading up to their stool sampling. This first study of its kind did confirm that plastics are unintentionally ingested and ultimately reach the human gut.

Participants

8 healthy male and female participants from AT, FI, UK, IT, JP, NL, PL and RU
Exclusion criteria: diagnosed gastrointestinal disease, recent dental treatment, medical diets, alcohol abuse and intake of drugs affecting stool frequency, consistency or resorption.

Data collection and sampling

Food log to track 6-7 days prior to sampling
Questionnaires on plastic exposure, alcohol consumption, chewing gum consumption, cosmetics, drinking habits from PET bottles
 Sampling of 50 g stool

Final Results

DESCRIPTIVE STATISTICS
3 male and 5 female participants, aged 33-65 yrs
0/8 vegetarians
2/8 daily chewing gum users
8/8 contact with plastic-wrapped food

STOOL ANALYSIS
20 microplastic particles/10 g stool (median)
[Q1-Q3: 18-172]
of size 50-500 µm

8/8 samples tested positive for microplastics
9/10 plastic types detected overall
3-7 different plastic types per sample
7 g stool analysed (median) [Q1-Q3: 3-11]

Assessment of contamination caused by lab: No microplastic particles > 50 µm (10 plastic materials listed above) detected in blank sample.

RELATIVE FREQUENCIES OF MICROPLASTIC TYPES

- PP and PET were found in 100% of samples (*)
- PP, PET, PS and PE were found in >95% of samples

STOOL RESIDUES FOR ANALYSIS

Coarse fraction of pre-treated stool (> 0.5 mm) with seeds, fibres, fluff and thin-layered fragments remaining.
- ATR-FTIR measurements, no > 0.5 mm plastics detected

Fine fraction of pre-treated stool (0.05-0.5 mm) with small particles, fibres and fluff remaining.
- FTIR measurements in transmission with imaging

NEXT STEP: IDENTIFY MATERIAL OF SOLID REMAINS
AND TEST FOR THE PRESENCE OF MICROPLASTICS:
Polyethylene (PE), Polypropylene (PP), Polyamide (PA), Polyvinylchloride (PVC), Polystyrene (PS), Polyethylene terphthalate (PET), Polyurethane (PU), Polymethylmethacrylate (PMMA), Polycarbonate (PC), Polyoxyxymethylene (POM).

Detection of Microplastics by FT-IR Spectroscopy and Imaging

FT-IR IMAGING EXAMPLE

Stool residues of size 0.05-0.5 mm
- Left: Photograph of analytical sample
- Right: FT-IR transmission images
 - correlation R² with plastics is color-coded;
 - here: Polyethylene, R² = 0.7-0.9.
- Too many false positives for microplastics caused by interfering biological material that was still remaining after pre-treatment.

Successful reduction of biological matrix so that the masking effect is diminished considerably.
Automated FT-IR image analysis results in fewer false positives.
Additional expert check of each particle’s IR spectra is crucial for setting reasonable correlation thresholds.

Conclusion & Outlook

Microplastics reach the human gut and are (partly?) excreted with the stool. The present pilot study included only a small sample size for first screening in humans. The analytical procedures are now available for human stool screening.
Expand work to a study with a larger number of participants.
Refine study design for investigating plastic exposure and medical implications.
Plan for analytical validation experiments using microplastic reference material.
The presence of anthropogenic debris in seafood for human consumption has been observed (Miranda and de Carvalho-Souza, 2016; Rochman et al., 2015). There is also evidence of microplastic ingestion by humans (Schwabl, 2018). Microplastics have been observed even in commercial food-grade salts (Kim et al., 2018).

Kosuth et al. (2018) estimated that the average person ingests 5,800 synthetic particles, such as synthetic microfibers, a year from tap water, beer, and sea salt alone. However, only one study examined microplastics in stool samples (Schwabl, 2018) with particles between 50 and 500 μm in size observed in all the samples evaluated, 18 to 172 particles per 10 g of stool. No fibers were reported, however, the microplastics were mainly comprised of polypropylene (62.8%) and polyethylene terephthalate (17%) (Schwabl, 2018).

However, only one study examined microplastics in stool samples (Schwabl, 2018) with particles between 50 and 500 μm in size observed in all the samples evaluated, 18 to 172 particles per 10 g of stool. No fibers were reported, however, the microplastics were mainly comprised of polypropylene (62.8%) and polyethylene terephthalate (17%) (Schwabl,